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Abstract 12 

Heightening the water repellency of surfaces can serve anti-icing purposes by removing 13 

water drops before they freeze and adhere to a surface. Here we study the impact dynamics 14 

of water droplets on silicone rubber surfaces—ranging from hydrophobic to 15 

superhydrophobic—at −20, −10, and 25 °C. We evaluate the influence of static contact 16 

angle, contact angle hysteresis, surface roughness, temperature, impacting velocity, and 17 

droplet diameter on droplet behavior (e.g., deposition, bouncing, splash). Minor effect of 18 

temperature on droplet dynamics on microstructured surfaces for a wide range of Weber 19 

and Reynolds numbers is observed. Experimental observations show that full bouncing 20 

only occurs on superhydrophobic surfaces with a CA > 160° and a CAH <  2° at 21 

temperatures above 0 °C for We <110 and Re <5000. Increasing the impact velocity of the 22 

droplet on rough surfaces heightens the probability of splashing. This experimental data is 23 

then coupled with machine-learning techniques (logistic regression, decision tree, and 24 

random forest) to comprehensively investigate droplet impact behavior on hydrophobic 25 

and superhydrophobic surfaces at various temperatures. We predict the behavior 26 

probability of impacting droplets on surfaces as a function of Weber number, Reynolds 27 

number and surface features (static contact angle, contact angle hysteresis, temperature, 28 

and surface roughness). Our experimental results and machine learning–based predictions 29 

are highly consistent, demonstrating that machine learning can effectively predict droplet 30 

motion on hydrophobic and superhydrophobic silicone rubber surfaces at different 31 

temperatures. 32 
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1. Introduction 35 

Ice formation on structures poses a major hazard for exposed infrastructure and equipment 36 

and can lead to serious incidents, including aircraft crashes, the collapse of transmission 37 

lines, and damage to industrial facilities [1–4]. Ice removal techniques from solid surfaces 38 

can be classified into active de-icing and passive anti-icing methods. The latter means 39 

offers numerous advantages over active de-icing [5–7]. Passive anti-icing includes 40 

icephobic surfaces, which prevent ice formation on the surface without requiring external 41 

energy. These icephobic surfaces usually operate by exhibiting an improved water 42 

repellency (droplet mobility) to remove water droplets before their freezing, hinder ice 43 

nucleation on the surface, reduce the ice adhesion force, or a combination of these 44 

properties [8–11]. 45 

Improving our knowledge about ice nucleation, ice formation, and ice adhesion processes 46 

can help overcome issues related to surface icing and enhance the design of icephobic 47 

surfaces. Superhydrophobic surfaces can be very effective in preventing ice formation 48 

compared with hydrophilic or hydrophobic surfaces because of their ability to repel 49 

impacting droplets before ice nucleation [12,13]. Nonetheless, some studies have reported 50 

the opposite effect of superhydrophobicity on ice mitigation [14,15]. 51 

Much focus has been placed on ice accretion and the related impact and freezing processes 52 

of water droplets on cold surfaces [16–19]. The impinging of a droplet on a surface leads 53 

to a conversion from inertial energy to surface energy, droplet spreading, and droplet 54 
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deformation. The wetting properties of surfaces and the extent of energy dissipation when 55 

a droplet lands on a surface produce various impact droplet patterns [20]. For 56 

superhydrophobic surfaces, the pure conversion of kinetic energy into surface energy is 57 

expected because the air pockets trapped at the interface minimize the dissipation of the 58 

kinetic energy of the droplet. Thus, bouncing is possible because of the sufficient energy 59 

stored in deformation during droplet impact. However, high-energy dissipation for other 60 

surfaces, such as hydrophilic surfaces, reduces the kinetic energy available for bouncing 61 

[21,22]. 62 

Different phenomena arise during droplet impaction onto a solid surface, such as 63 

deposition, receding, splashing, and bouncing [23]. The outcome of an impacting droplet 64 

is determined by multiple factors, including droplet properties (e.g., viscosity, density, 65 

surface tension), operational parameters (e.g., velocity), and surface characteristics (e.g., 66 

wettability) that are altered by surface roughness or texturing [24–26]. Dimensionless 67 

parameters are used to account for these factors affecting droplet impact dynamics. These 68 

critical parameters include the Reynolds number, 𝑅𝑅𝑅𝑅 = 𝜌𝜌𝑢𝑢0𝑑𝑑0 µ⁄ , the Weber number, 69 

𝑊𝑊𝑊𝑊 = 𝜌𝜌𝑢𝑢02𝑑𝑑0 𝜎𝜎⁄ , the capillary number, Ca=µ𝑢𝑢0/σ, and the Ohnesorge number, 𝑂𝑂ℎ =70 

µ/�𝜌𝜌𝜌𝜌𝑑𝑑0 , where 𝑢𝑢0 is the impact velocity, 𝑑𝑑0 is the initial droplet diameter, and 𝜌𝜌, µ, and 71 

σ are the liquid density, viscosity, and surface tension, respectively [27]. Surface 72 

wettability is commonly stated in terms of the contact angle (CA) of a water droplet and 73 

contact angle hysteresis (CAH), which is the difference between the advancing and 74 

receding CAs. The latter is often used as a measure of droplet mobility across a surface. 75 
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A critical characteristic affecting liquid droplets on cold solid substrates is surface 76 

temperature. Under icing conditions, water droplet properties, wetting properties, and frost 77 

formation depend greatly on surface temperature and cause the impacted water droplet to 78 

move less rapidly across the cold surface [28]. The effect of substrate roughness and 79 

temperature on droplet impact dynamics on cooled superhydrophobic surfaces has been 80 

discussed by Maitra et al. [29]. They found that the critical Weber number for the droplet 81 

impalement was independent of the substrate temperature. However, Alizadeh et al. [29] 82 

reported a strong temperature dependency for the impact dynamics of water droplets on 83 

hydrophilic to superhydrophobic surfaces at a Weber number of 138. Lower substrate 84 

temperatures lead to less droplet retraction. Zheyan et al. [30] reported the detailed dynamic 85 

motions of a water droplet impacting an ice surface and concluded that the lowering of the 86 

ice surface temperature decreases the maximum spreading factor. 87 

Much effort has been placed on investigating the impact behavior of water droplets on cold 88 

superhydrophobic surfaces; however, most of these studies have been confined to narrow 89 

parameter ranges. Mishchenko et al. [31] focused on the design of ice-free nanostructured 90 

surfaces and evaluated droplet behavior on supercooled nano- and microstructured surfaces 91 

able to repel impacting water before ice nucleation. They performed impact tests using 15 92 

µL water droplets falling from 10 cm onto cold surfaces (−25 to −30 °C) and found that 93 

the rebounding process was suppressed on surfaces colder than −25 °C. Ding et al. [32] 94 

investigated the effect of superhydrophobic surface inclinations and the degree of 95 

supercooling on water droplet dynamics. In their study, a 14 µL water droplet was projected 96 

at 0.99 m·s−1 onto a superhydrophobic surface having a static CA of 160 ± 1°. They 97 

observed that the droplet successively underwent full rebound, partial rebound, and no 98 
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rebound as surface temperatures decreased. Zheng et al. [33] demonstrated that 99 

supercooled droplets impacting inclined and dry superhydrophobic surfaces can bounce off 100 

without freezing because of a reduced surface contact time and contact area of the 101 

impinging water droplets on properly designed surfaces. Finally, Li et al. [34] investigated 102 

the influence of a supercooled water droplet on cold hydrophilic and superhydrophobic 103 

surfaces. They observed that solidification of a 1.6 mm diameter supercooled droplet 104 

impacting a cold superhydrophobic substrate at 3.4 m·s−1 reduced droplet bouncing. 105 

Most research in this area has focused on the outcome of droplet regimes relying on a few 106 

select parameters. Critically, these studies lack an analysis incorporating all possible 107 

parameters, especially as the droplet impact process is a complex interaction of multiple 108 

variables, as discussed above. However, the development of machine learning–based 109 

methods that can consider all influential parameters affecting impacting droplet behavior 110 

can offer some design criteria for water-repellent superhydrophobic surfaces subjected to 111 

various temperatures. Machine learning can support engineering tasks to manage and 112 

extract insights from the resulting data [35,36]. Furthermore, these approaches can reduce 113 

the high costs and time required for carrying out multiple complex experiments. 114 

Artificial intelligence and statistical-learning methods are increasingly used in various 115 

fields, such as computer science, material science, and aircraft icing research [37–39]. For 116 

example, Zhang et al. [40] used artificial neural networks and evolutionary computation to 117 

enhance our understanding of superhydrophobic surfaces by determining the relationship 118 

between water droplet volume, nanoparticle weight, the falling distance between the 119 

superhydrophobic surface and the water droplet, and multiple properties (droplet CA, 120 
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sliding angle, and adhesive force). Li et al. [41] also applied machine learning to predict 121 

the severity of aircraft icing in relation to various conditions, including liquid water 122 

content, droplet diameter, and exposure time. Although it is possible to examine the effect 123 

of various parameters in conventional experimental investigations, machine-learning 124 

models improve our ability to find patterns within large data sets. 125 

There is currently no comprehensive study that has examined the influence of surface 126 

characteristics on the dynamic behavior of water droplets at different temperatures while 127 

incorporating machine learning approach. In our previous work [42], we investigated the 128 

drop dynamic behavior on hydrophobic and superhydrophobic surfaces at room 129 

temperature in line with finding some design criteria (in terms of surface CA, CAH, and 130 

roughness values) based on machine learning approach to improve the feasibility of 131 

achieving the bouncing of drops when they impact on hydrophobic and superhydrophobic 132 

surfaces. The goal of the presented research is to investigate temperature dependency of 133 

water droplet impact on hydrophobic and superhydrophobic surfaces and coupling the 134 

experimental results with machine learning-based methods for prediction of the drop 135 

dynamic behavior at different temperatures. It is worth mentioning that this new article 136 

complements the previous article by examining the temperature dependency of the droplet 137 

dynamic, using linear and nonlinear methods of machine learning to predict the droplet 138 

dynamic, providing different equations for prediction the droplet behavior and studying the 139 

relative importance of affecting parameters on water droplet impact. 140 

In this paper, we study the temperature dependency of impact dynamics. We quantify the 141 

influence of drop properties, kinematic parameters, and surface characteristics on 142 



8 
 

impacting droplet behavior (e.g., deposition, bouncing, and splashing) on silicone rubber 143 

surfaces (hydrophobic to superhydrophobic). A machine-learning technique is applied to 144 

evaluate the outcome regime of impact droplet behavior based on CA, CAH, temperature 145 

(T), and the root mean square surface roughness value (Sq), We and Re numbers. We 146 

demonstrate that machine learning can effectively predict droplet impact behavior. We 147 

formulate three different methods using a decision tree, random forest, and logistic 148 

regression to develop a data-driven approach for predicting droplet impact behavior by 149 

exploring the complex interactions between CA, CAH, Sq, T, and the We and Re numbers. 150 

Our experimentation and machine-learning approach is a novel means of investigating 151 

droplet behavior on hydrophobic to superhydrophobic surfaces at different temperatures. 152 

Moreover, we develop correlations through logistic regression for predicting the behavior 153 

probability of impacting droplets as a function of the analyzed parameters. We selected 154 

these three machine-learning methods for predicting impact droplet behavior, as they are 155 

state-of-the-art techniques having a strong predictive capability. 156 

2. Material and Methods 157 

2.1. Sample preparation  158 

High-temperature vulcanized (HTV) silicone rubber was used as the process material. A 159 

chemical-etching method was used to produce microstructured aluminum templates 160 

(A6061) using a 4.8, 9.8, 14.8, 19.8 wt% hydrochloric acid solution and immersion of 161 

aluminum templates in this solution for 2 h. A micro-compression molding machine with 162 

two temperature-adjustable platens (Carver Inc. USA) was used to mold the rubber 163 

samples. The hydraulic press system can precisely control an applied force of 3 to 194 kN 164 

[24]. The rubber material is cast in three pieces of flat molds, each with a right rectangular 165 
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prism cavity of 25 x 15 x 6 mm3. After the template was placed in the cavity, the rubber 166 

material was placed over it. Next, the top of the mold was closed. The mold was set in the 167 

press machine to begin the process. In the press machine, the following mold parameters 168 

were set: a molding pressure of 35 MPa, a curing time of 4.7 minutes, and a mold 169 

temperature of 149 °C. After the process was complete, the mold was opened, and the 170 

silicone rubber with the size of 25 x 15 x 6 mm3 was removed from the aluminum template 171 

(Fig. 1). 172 

173 

Fig. 1 Schematic of the fabrication of micro-nanostructured silicone rubber surfaces via a 174 

microcompression molding technique [21] 175 

2.2. Surface Characterization 176 

Using a Kruss™ DSA100 goniometer at 25 °C, we measured the water CA using a water 177 

droplet of 4µL deionized water based on the method of Young-Laplace. A CAH is equal 178 

to the difference between the advancing and receding contact angles when a droplet moves 179 

on the surface. All wettability measurements were taken at five different points on each 180 

sample to ensure accuracy and reproducibility. For each sample the average and standard 181 

deviation were reported. The surfaces were characterized using a confocal laser 182 

microscopy profiler (Profil3D, Filmetrics, USA) and a scanning electron microscope 183 
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(JSM-6480 LV, JEOL Japan). In Fig. 2, the surface structures of different samples are 184 

presented as SEM images and 3D profiles. 185 

In the case of Sample1, which was replicated on a smooth aluminum template, it exhibited 186 

hydrophobic surface characteristics (due to its low surface energy), while the other samples 187 

exhibited superhydrophilicity (because they were replicated on aluminum templates with 188 

varying acid concentrations). Therefore, to fabricate superhydrophobic surfaces, we used 189 

a low-surface-energy material with intrinsic hydrophobicity, combined with a sufficient 190 

level of surface roughness. In the Sample 2, 3, 4, and 5 samples, Sq increased by 1.87, 3.77, 191 

4.49, and 4.28 respectively compared to sample1. Table 1 shows CA, CAH, and Sq of these 192 

five microstructured surfaces. 193 

 194 

Fig. 2 The 3D surface profiles and SEM images of samples (a) 1, (b) 2, (c) 3, (d) 4, and (e) 5 [42]. 195 

Table 1 Surface characteristics of hydrophobic and superhydrophobic surfaces and 196 
kinematic parameters used in the experiments. For all samples, falling velocity (u0) varied 197 
between 0.4 and 2.7 m/s, droplet size (do) was either 2.67 or 3.02 mm, and the surface 198 
temperatures (T) were −20, −10, and 25 °C 199 



11 
 

Sample 
No. 

CA 
(°) 

CAH 
(°) 

Sq 
(µm) 

1 116.0 ± 2 46.5 ± 2.4 1.76 ± 0.17 
2 154.5 ± 1.4 28.0 ± 1.6 3.29 ± 0.4 
3 165.3 ± 1.1 1.5 ± 0.2 6.64 ± 0.32 
4 166.6 ± 0.9 0.6 ± 0.3 7.90 ± 0.24 
5 162.8 ± 0.9 1.3 ± 0.8 7.54 ± 0.33 

 200 

2.3. Experimental Setup 201 

The experimental freezing setup included a thermally insulating and optically transparent 202 

chamber, high-speed camera, thermostatic bath, cold base, droplet injection system, test 203 

samples, data acquisition system, temperature sensor, humidity sensor, and a vibration-free 204 

table (Fig. 3). The double layer chamber that is thermally insulating and optically 205 

transparent will be used to control the temperature of humidity of experiment and affecting 206 

parameters on ice nucleation to be uniform during the experiment and increase the accuracy 207 

and reproducibility of the experiments. Its transparency would facilitate imaging of the 208 

freezing droplet. By having a small interior chamber (150 mm length ×150 mm width ×110 209 

mm height) inside a large chamber (420 mm length ×420 mm width × 400 mm height), the 210 

droplet could be subjected to a uniform environment. During the cooling process, the 211 

relative humidity of the chamber can be controlled with a constant flow of dry nitrogen gas 212 

(N2). We adjusted the temperature of the cold base using a thermostatic bath. The chamber's 213 

temperature and relative humidity were around 25 °C and 40% ± 3%, respectively. A high-214 

speed camera and LED illuminator monitored the droplet impact process and visually 215 

recorded the droplet movement on the surfaces. 216 



12 
 

 217 

Fig. 3 Schematic of the experimental setup 218 

We used two different syringe nozzles to vary drop diameters, all the spherical water 219 

droplets had a fixed volume of 10 µL (2.67 mm in diameter) and 20 µL (3.02 mm in 220 

diameter). We released 2.67 and 3.02 mm diameter droplets at room temperature from a 221 

droplet injection system at various heights, corresponding to initial droplet impact 222 

velocities ranging between 0.4 and 2.74 m·s−1. We placed a high-speed camera 223 

(MotionBLITZ, MIKROTRON, EoSens Cube 7, Germany) to record the droplet impact 224 

behavior at 3000 fps. Before each test, we adjusted the plate's temperature to either 25, 225 

−10, or −20 °C and placed the sample on the plate. We repeated each test (a specific 226 

combination of parameters) at least three times. We computed the impact velocity of the 227 

droplets from the elapsed distance and time recorded by the camera and the ImageJ 228 

software [42]. All experimental parameters, including the droplet properties, surface 229 

characteristics, surface temperature, and impact velocity, are summarized in Table 1. 230 

2.4. Machine-Learning Methods 231 
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Among the various machine-learning methods, regression and classification are the most 232 

commonly used methods. To predict impacting droplet behavior on the silicone rubber 233 

surfaces, we applied three machine-learning models: logistic regression (LR), decision tree 234 

(DT), and random forest (RF). DT machine-learning models partition the feature space into 235 

several decision regions by successively dividing the space through simple decision rules, 236 

where each rule can be as simple as thresholding a single feature [43]. Each decision region 237 

is then assigned a single class label based on the class of its training samples. When the 238 

tree is fully constructed, the class of any given test sample is predicted by identifying the 239 

decision region into which the sample falls. These models are applicable to multiclass and 240 

nonlinear classification problems.   241 

   242 

Fig. 4. An example illustrating DT classifier. (a) A 2D feature space corresponding to a data set 243 

with 2D feature vectors. The training samples are shown with red and blue circles with their color 244 

representing the class. The space is partitioned by a DT classifier trained over the training examples. 245 

(b) DT classifier that is trained over the training samples. 246 

Fig. 4 shows an example of how a DT partitions 2-dimensional feature space of a 2D data 247 

with red (five labeled samples) and blue classes (three labeled samples). The left figure 248 
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(Fig. 4(a)) indicates the partitioning of the space, where the color of each region represents 249 

the class label assigned to it (red shadow for class red and blue shadow for class blue). The 250 

right figure (Fig.4(b)) shows the corresponding DT as a tree structure where each node 251 

contains a rule in the form of a feature thresholding. If the rule is satisfied for any test 252 

sample (True), we choose the left node in our next step, otherwise (False) we go to the right 253 

node. Starting from the root node (#0), we keep choosing nodes based on the nodes’ rules 254 

until we get to a node without any children. Such nodes are usually called “leaves”. Each 255 

leaf is associated with a partition in the feature space and is assigned a class label based on 256 

the class majority of the training samples belonging to that partition. In our example in Fig. 257 

4, node #2 is a leaf that corresponds to the horizontal rectangle at the top of Fig. 4(a) which 258 

has two red training samples, hence is assigned the red class. Any test that falls in this 259 

partition (i.e., x2≥0.75) will be predicted as a “red” sample. 260 

Training a decision tree starts from the root node corresponding to the entire feature space, 261 

where a feature and a cut-off threshold are selected so that the selected feature partitions 262 

the data into two groups having the highest possible sample homogeneity. Each partition 263 

forms a new node in the tree, where the same procedure is repeated to further divide the 264 

data set into two additional leaves. The divisions continue until either all the paths have 265 

reached the maximum number of divisions from the root, i.e., maximum depth (denoted by 266 

dmax), or all the leaves are assigned partitions with a sample homogeneity higher than a pre-267 

specified threshold. Nodes at which splitting is stopped are referred to as leaves. When 268 

classifying the groups of data, the homogeneity of samples is inversely defined on the basis 269 

of the impurity of their class labels. Lower impurity implies higher homogeneity, and the 270 
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smallest impurity is achieved when the class labels of all samples are identical. In our 271 

experiments, we used the Ginni index to measure class impurity, defined as: 272 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 = 1 − ∑ 𝑃𝑃𝑖𝑖2𝑐𝑐
𝑖𝑖=1 ,   Eq. 1 273 

where Pi denotes the empirical distribution of the ith class. We also ensured that all leaves 274 

contained at least one sample. 275 

Training the DT can easily lead to an over-partitioning of the feature space, which, in turn, 276 

implies overfitting and instability. A common approach to alleviate this issue is to build an 277 

ensemble of trees via bootstrapping, a method commonly referred to as random forest (RF). 278 

This method consists of constructing multiple DTs, each separately trained with a distinct 279 

randomized data set that is obtained by sampling with replacement from the original data 280 

set [44]. Each tree in the forest will make an individual prediction of the class label of a 281 

test sample, and the final prediction will be reported through majority voting. In contrast 282 

to individual trees, RFs can assign a probability to their inferences, enabling an uncertainty 283 

analysis of the results. In our experiments, we trained 50 DTs to build our RF. 284 

For an alternative approach, we also tried logistic regression (LR) in our experiments as a 285 

linear classifier that is widely used because of its simplicity [45]. This model is a single-286 

layer neural network where the output undergoes a softmax function (a function in form of 287 

𝑒𝑒𝑧𝑧𝑖𝑖/∑ 𝑒𝑒𝑧𝑧𝑗𝑗  𝑛𝑛
𝑗𝑗=1  for normalizing a set of real-valued scores z1, ..., zn) to generate a probability 288 

distribution, which is to be interpreted as the probability of belonging to different classes. 289 

Compactly representing this model, given the input vector x = [x1,...,x6] = [T, Re, We, CA, 290 

CAH, Sq], LR produces the output as the probability that x belongs to class i (1 ≤ 𝑖𝑖 ≤ 6): 291 
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𝑃𝑃(𝑦𝑦 = 𝑖𝑖 | 𝑥𝑥)  =  𝑒𝑒𝛽𝛽𝑖𝑖1𝑥𝑥1+⋯+𝛽𝛽𝑖𝑖𝑖𝑖𝑥𝑥𝑑𝑑/∑ 𝑒𝑒𝛽𝛽𝑗𝑗1𝑥𝑥1+⋯+𝛽𝛽𝑗𝑗𝑗𝑗𝑥𝑥𝑑𝑑  6
𝑗𝑗=1 ,   Eq. 2 292 

where 𝛽𝛽𝑖𝑖= [𝛽𝛽𝑖𝑖0, 𝛽𝛽𝑖𝑖1,.., 𝛽𝛽𝑖𝑖6] denotes the parameters corresponding to the ith class. The 293 

exponents of these class probabilities are also known as the log-likelihood of the data 294 

sample x given the parameter values 𝛽𝛽𝑖𝑖, 1 ≤ 𝑖𝑖 ≤ 6. In the training step, parameters are 295 

tuned by maximizing (through the gradient ascent) the summation of the log-likelihood 296 

terms of the training data given their observed class labels plus a regularization penalty 297 

term that is usually in the form of the L1 [46] or L2 [47] norm of the parameter vectors. 298 

We used the latter in our experiments with a regularization coefficient of 1. Note that log-299 

likelihoods are linear with respect to the data features; hence, logistic regression is known 300 

to have a lower class separability power than DT and RF, which experience greater 301 

nonlinearity. 302 

2.4.1. Prediction Rules 303 

2.4.1.1. Decision Tree 304 

Class prediction in DT models includes following a set of simple decision rules over 305 

individual features. To keep our discussion concise, here we visualize only our shallowest 306 

DT model (dmax = 4) and demonstrate how class is inferred through its branches and leaves. 307 

The tree structure and trained parameters of this model are shown in Fig. 5, in which each 308 

tree node (rectangle) is labeled by its parameters and training data statistics. The first line 309 

of each node specifies the node ID. The second line shows the node’s decision rule as an 310 

inequality for an individual feature. These inequalities divide the feature space into two 311 

halves producing one “child” node per partition. Moreover, a set of multiple inequalities 312 

collectively defines a partition (subregion) of the feature space. Each node in our tree is 313 
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assigned a feature space partition that is determined by the set of its ancestors’ inequalities. 314 

For instance, the root is assigned the whole feature space because it has no ancestors 315 

(hence, no partitioning), and the partition for Node #3 is defined by the inequalities {Sq ≤  316 

3.281, We ≤ 87.925}. The leaves do not have decision rules as they lack descendants. The 317 

third line in each node indicates the Ginni index value of the class labels for all the training 318 

samples falling inside the node’s partition. Two more properties are present inside the 319 

leaves (i.e., nodes without descendants): “class sizes,” explicitly listing the class 320 

distribution of the training samples inside the corresponding partitions, and “class,” 321 

representing the predicted class inferred by the leaf. The inferred class is determined by the 322 

class having the largest number of training samples in the leaf’s partition. Furthermore, 323 

class probabilities are obtained by estimating the empirical distribution from the class sizes. 324 

Decision-tree predictions (class assignment) for any given test sample begin from the root 325 

node (#0), shown at the top of the tree, and move forward sequentially by choosing the 326 

next node based on the current node’s decision rule. This sequential decision-making task 327 

ends once it reaches a leaf. Using Fig. 5, we can follow, as an example, the test sample 328 

with the feature values x = [T, Re, We, CA, CAH, Sq] = [−10, 3303.94, 52.22, 166.6, 0.6, 329 

7.9]. Starting from the root node, the first decision rule we consider is Sq ≤ 3.281. Given 330 

that our test’s Sq is 7.9, the rule’s inequality does not hold, and therefore, we choose Node 331 

#2 (the child node on the right in the figure) as our next node. The decision rule for Node 332 

#2 is We ≤ 87.925, which does hold in the case of our test sample (We = 52.22). Therefore, 333 

we choose Node #3 (the left child of Node #2 in Fig. 5) as our third step. Repeating this 334 

procedure, we encounter the decision rule T ≤ 24.843 in Node #3, which holds; thus, we 335 

move to Node #4, followed by decision rule Re ≤ 3526.178, which also holds; hence we 336 
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move to Node #5. At Node #5, our prediction procedure ends because there are no further 337 

descendants. The predicted class in this leaf is PB (Fig. 5). To measure the uncertainty of 338 

this prediction, we can compute the empirical class distributions by normalizing the class 339 

sizes such that they sum to one. From Fig. 5, the class sizes are [0, 55, 0, 297, 8, 0] (the 340 

total number of training samples in Node #5’s partition is 55 + 297 + 8 = 360).  341 

Normalizing, this yields the empirical distribution [0, 55/360, 0, 297/360, 8/360, 0] = [0, 342 

0.153, 0, 0.825, 0.022, 0] corresponding to classes BS, D, FB, PB, PS, and S, respectively. 343 

Hence, our final prediction for this test sample will be class PB with a probability of 0.825. 344 
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2.4.1.2. Logistic Regression 346 

The class probabilities in this model are described through softmax functions. From the 347 

trained parameters and the equation above (Eq. 2), the class probabilities can be described 348 

as: 349 

P(y=D | x) ∝ exp(0.004-0.097 T-0.003 Re +0.064 We+0.004 CA+0.454 CAH-0.021 Sq), Eq.3 

P(y=PB | x) ∝exp(0.317 T-0.002 Re-0.049 We+0.044 CA-0.23 CAH+0.044 Sq), Eq.4 

P(y=FB | x) ∝exp(-0.002-0.079 T+0.005 Re-0.046 We-0.103 CA-0.09 CAH-0.024 Sq), Eq.5 

P(y=PS | x) ∝exp(-0.023 T-0.003 Re+0.04 We+0.089 CA-0.066 CAH), Eq.6 

P(y=BS | x) ∝exp(-0.119 T-0.001 Re+0.032 We+0.029 CA+0.073 CAH-0.022 Sq), and Eq.7 

P(y=S | x) ∝ exp(-0.001+0.002T+0.004Re-0.041 We-0.064 CA-0.141 CAH+0.218 Sq). Eq.8 

Note that these equations do not indicate equalities. The right-hand side of each equation 350 

is proportional to the corresponding class probability. The exact class probabilities can be 351 

obtained by normalizing these values by their summation. To predict the class label of a 352 

test sample, we can simply compute all the right-hand sides of the equations and then select 353 

the class having the highest score among all the classes. 354 

These LR-based equations are a powerful means of modeling multilabel outcomes, such as 355 

the various phenomena (deposition, full bouncing, partial bouncing, and splashing, etc.) 356 

that occur during a droplet impact on a solid surface to measure the statistical significance 357 

of each independent variable with respect to probability. To better understand how to make 358 

class predictions with LR, let us consider a test sample with the feature x = [T, Re, We, CA, 359 
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CAH, Sq] = [25, 4237.42, 85.9, 162.8, 1.3, 7.54]. Inserting these values into the class 360 

probability equations produces the non-normalized class scores: [91.65, 0.00, 11.44, 94.84, 361 

0.00, 0.16], implying that the fourth class (i.e., PS) is assigned the largest score and is 362 

therefore the predicted class. The second and fifth classes (D and BS, respectively) 363 

obtained near-zero scores. Normalizing these values by division to their summation will 364 

give us a probability distribution that can be interpreted as the certainty of our trained LR 365 

model regarding the predicted class. For this test example, the probability distribution is 366 

[0.46, 0.00, 0.06, 0.48, 0.00, 0.00], implying that our model probabilistically infers that this 367 

sample belongs to Class 1 (S) with a probability of 46%, Class 3 (PB) with a probability 368 

of 48%, and Class 4 (PS) with a probability of only 6%. 369 

3. Results and Discussion 370 

3.1. Outcome of Droplet Impact Dynamics 371 

We first investigated the influence of surface temperature on impact dynamics by varying 372 

the substrate temperature (−20, −10, and 25 °C) while maintaining the initial droplet 373 

temperature at room temperature. For the 25 °C experimental results, we relied on some 374 

previously published data from our lab [42]. As illustrated in Fig. 6, the water droplets vary 375 

in their impact behaviors on the surfaces, including full bouncing (FB), partial bouncing 376 

(PB), deposition (D), prompt splashing (PS), bouncing-splashing (BS), and splashing (S) 377 

[23]. 378 
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 379 

Fig. 6 Droplet impact regimes on silicone rubber surfaces. Regimes include full bouncing 380 
(FB, T = 25 °C, Sq = 7.54 µm, We = 15.81), partial bouncing (PB, T = −10 °C, Sq = 6.64 381 
µm, We = 45.25), deposition (D, T = −10 °C, Sq = 1.76 µm, We = 16.81), prompt splashing 382 
(PS, T = −10 °C, Sq = 7.9 µm, We = 62.37), bouncing-splashing (BS, T = −10 °C, Sq = 7.9 383 
µm, We = 142.62), and splashing (S, T = −10 °C, Sq = 7.54 µm, We = 208.74) 384 

Impacting a droplet on hydrophilic, hydrophobic, and superhydrophobic surfaces alters the 385 

resulting regime in terms of deposition, bouncing, splashing, etc. Spreading or sticking of 386 

droplets can be observed when the test surfaces are hydrophilic or hydrophobic. In contrast, 387 

droplet mobility increases on superhydrophobic surfaces having a low CAH. The kinetic 388 

energy of the impacting droplet on the hydrophobic and superhydrophobic surfaces is 389 

converted into surface energy, and a small amount of energy is lost through viscous 390 

dissipation energy. Balances between inertia, viscosity, and capillary forces control the 391 

dynamic of droplets [20]. Surface properties, such as wettability, roughness, and 392 

temperature, markedly affect the bouncing and deposition of droplets; at lower 393 

temperatures, for example, the losses from viscous dissipation increase and lead to less 394 

available energy for bouncing. Therefore, the probability of bouncing decreases at lower 395 

temperatures [48]. 396 

Impacting water droplets at cold temperatures (−10 and −20 °C) operated in five regimes, 397 

i.e., deposition, partial bouncing, splashing, prompt splashing, and a transition regime 398 

between bouncing and splashing (Fig. 7). Fig. 7a1, a2 shows the dimensionless parameters 399 

for droplets hitting a hydrophobic surface (CA = 116°, CAH = 46.5°). For all Re and We 400 
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numbers between 1380 and 7480 and 9 and 267, respectively, deposition occurs, and the 401 

liquid droplet cannot rebound. At lower Re and We numbers (Re <5293 and We <134 at –402 

10 °C, Re <4646 and We <103 at –20 °C) for a non-water-repelling superhydrophobic 403 

surface of roughness 3.29 µm, the deposition of droplets and a prompt splashing occurs 404 

(Fig. 7b1,b2)), whereas at higher Re and We numbers, the impinging droplets splash. 405 

Droplet impingement on water-repellent superhydrophobic surfaces having a lower CAH 406 

and varying roughness values (6.64, 7.54, and 7.9 µm) is shown in Fig. 7c–e, respectively. 407 

Depending on the surface roughness value, partial bouncing, deposition, splashing, prompt 408 

splashing, and bouncing-splashing can occur. At lower Re and We numbers, the droplets 409 

experience partial bouncing on these water-repellent surfaces. At intermediate Re and We 410 

numbers, prompt splashing occurs, and eventually, the droplets show a splashing behavior 411 

at higher Re and We numbers. Droplets were not deposited during the impact process for 412 

the superhydrophobic surface with the highest CA, highest roughness, and lowest CAH, 413 

although the probability of bouncing-splashing increases as surface roughness is greater 414 

for these surfaces at –10 °C. 415 



24 
 

(a1) 

 

(a2) 

 
(b1) 

 

(b2) 

 
(c1) 

 

(c2) 

 



25 
 

(d1) 

 

(d2) 

 
(e1) 

 

(e2) 

 
Fig. 7 Impact dynamics on silicone rubber surfaces: a1 Sq = 1.76 µm, T = –10 °C; a2 Sq = 1.76 µm, 416 
T = –20 °C; b1 Sq = 3.29 µm, T = –10 °C; b2 Sq = 3.29 µm, T = –20 °C; c1 Sq = 6.64 µm, T = –10 417 
°C; c2 Sq = 6.64 µm, T = –20 °C; d1 Sq = 7.90 µm, T = –10 °C; d2 Sq = 7.90 µm, T = –20 °C; e1 418 
Sq = 7.54 µm, T = –10 °C; e2 Sq = 7.54 µm, T = –20 °C 419 

Fig. 8 a–e shows the impacting droplet behaviors at three surface temperatures for five 420 

different hydrophobic and superhydrophobic substrates. We observe that the effect of 421 

temperature is negligible for hydrophobic substrates and for non-water-repelling 422 

superhydrophobic surfaces having a roughness of 3.29 µm (Fig. 8 a, b). Impacting droplets 423 

are not affected by low temperatures on substrates 1 and 2. For the droplet impact on 424 

hydrophobic substrate 1, all operating conditions promote the spreading of the droplet; 425 



26 
 

however, for non-water-repelling superhydrophobic substrate 2, having a lower Weber 426 

number (<130), deposition occurs. 427 

When observing impacting droplets on water-repellent superhydrophobic substrates (Fig. 428 

8 c–e), we note that at low droplet velocity, the superhydrophobic surfaces of varying 429 

roughness (6.64, 7.54, and 7.9 µm) had better water repellency at sub-zero temperatures. 430 

These water-repellent superhydrophobic substrates reduce the probability of rebounding at 431 

lower temperatures. Droplets can partially or completely bounce off all water-repellent 432 

superhydrophobic surfaces at temperatures above 0 °C for We <110 and Re <5000; 433 

however, as the temperature of the surfaces is reduced, droplets show partial bouncing on 434 

the same substrates (having the same We values of <110), which related to the viscous 435 

dissipation. 436 

Increasing the impact velocity of the droplet on rough surfaces heightens the probability of 437 

splashing (Fig. 8), as has been reported in other studies [49,50]. However, increased droplet 438 

velocity reduces the probability of bouncing, particularly at low temperatures; for example, 439 

we did not find conditions in which full bouncing could be observed at low temperatures. 440 

In contrast, at room temperature, we observe the complete retraction of water on water-441 

repellent superhydrophobic surfaces (green symbol in Fig. 8). The most commonly 442 

observed behaviors of droplet dynamics on superhydrophobic surfaces at room temperature 443 

are complete bouncing, partial bouncing, and splashing [21]. 444 

Temperature, therefore, has a minor effect on droplet dynamics on cold hydrophobic and 445 

superhydrophobic silicone rubber surfaces for a wide range of We numbers and substrate 446 

temperatures. A possible reason for this temperature-independent nature of droplet 447 
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impacting is the delay of solidification. A spreading velocity greater than that for 448 

solidification, even in the case of solidification at the early stages of drop impact, leads to 449 

this limited influence of sub-zero temperatures on droplet impact [34]. 450 

Another reason relates to heat transfer [48]. A rougher superhydrophobic surface 451 

characterized by a low CAH can entrap more air pockets in the interface between the 452 

surface and the water droplet. This entrapment reduces the contact area with the droplet 453 

and acts as an insulator to heighten the heat transfer barrier. The reduced contact area and 454 

heat transfer ability of superhydrophobic surfaces efficaciously limit increases in viscosity 455 

by decreasing the temperature. The reduced heat transfer from a cold hydrophobic or 456 

superhydrophobic surface to a droplet at high We numbers can limit water droplet dynamics 457 

on these surfaces. Therefore, substrate temperature has a similar but weaker effect on the 458 

superhydrophobic substrates at higher droplet velocities. 459 

Moreover, the effect of surface temperature on droplet bouncing at lower We numbers for 460 

water-repellent superhydrophobic silicone rubber surfaces can be explained by the extent 461 

of energy dissipation and the wetting transition within the surface structures. Lower 462 

temperatures increase the viscosity of droplets, thereby increasing contact time and viscous 463 

dissipation while reducing the probability of bouncing. Moreover, surface wettability is 464 

significantly influenced by temperature. The wetting transition of a Cassie-Baxter to a 465 

Wenzel state by decreasing the temperature can reduce droplet bouncing [21,51]. 466 

Therefore, unlike many previous studies that examined the impact behavior of water 467 

droplets on cold superhydrophobic surfaces with a limited set of parameters, we 468 

investigated the effects of a wider range of influencing factors [31–34].  In general, for a 469 
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wide range of We and Re numbers, our experimental results showed that the temperature 470 

has a minor impact on droplet dynamics on cold hydrophobic or superhydrophobic silicone 471 

rubber surfaces while previous studies reported a strong temperature dependency for the 472 

impact dynamics of water droplets [30,31,48]. Increasing We number and surface 473 

roughness, heightens the probability of splashing, as has been reported in other studies 474 

[49,50,52].  475 

We then examine all possible variables simultaneously using machine-learning methods in 476 

the next section to analyze droplet regime; however, many of works do not include an 477 

analysis that incorporates multiple factors simultaneously [48,53,54]. Many studies have 478 

reported the use of machine learning techniques in material science, superhydrophobicity 479 

and icephobicity [40,41,54,55]. In this work we describe to the best of our knowledge the 480 

first application of machine learning to the detailed dynamic of water droplets impacting 481 

hydrophobic and superhydrophobic surfaces at different temperatures. Although the 482 

number of publications focused on droplet impact dynamics has increased recently, various 483 

aspects need study for the design of high-performance technical devices. The complexities 484 

of the impact process and the interaction of various influencing parameters could show the 485 

promise of the machine-learning approach. Therefore, if the dynamic behavior of droplets 486 

can be predicted before conducting experiments, assessing the performance of droplet-487 

based devices and industrial applications can be done more accurately and effectively. 488 
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Fig. 8 Droplet impact dynamics regime map for silicone rubber surfaces a Sq = 1.76; b Sq 489 
= 3.29; c Sq = 6.64; d Sq = 7.90; and e Sq = 7.54 µm at different temperatures 490 

3.2. Classification Results 491 

We trained and evaluated the three classifiers on a data set that we obtained from our 492 

experiments of impacting droplet behavior on silicone rubber surfaces (hydrophobic to 493 

superhydrophobic surfaces). Our data set consisted of six-dimensional feature vectors (T, 494 

Re, We, CA, CAH, and Sq) and six classes (FB, PB, D, PS, BS, and S). We randomly split 495 

the data into training and test partitions; the training set served for fitting the models, and 496 

the test data were kept for evaluating the model. The impact drop regimes show a highly 497 

imbalanced distribution (Fig. 9). To correct this imbalance between regimes, we 498 

augmented the training data using the synthetic minority oversampling technique (SMOTE) 499 

[56]. Oversampling ensures an equal number of training samples for each class; however, 500 

the test data were untouched and hence remained with an uneven distribution between 501 

classes. We had 2,688 training samples and 257 test samples following this preprocessing 502 

step. 503 

 504 
Fig. 9 Histogram of classes within the initial data set before the use of SMOTE. Splashing 505 
(S) is the dominant class (class 1), whereas bouncing-splashing (BS, class 2) and full 506 
bouncing (FB, class 3) are the least represented classes. Other classes are partial bouncing 507 
(PB, class 4), deposition (D, class 5), and prompt splashing (PS, class 6) 508 
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We used precision and recall to evaluate the performance of the trained classifiers. These 509 

criteria are specifically designed to be used with imbalanced data sets. In a binary 510 

positive/negative classification scenario, precision indicates the portion of the model’s 511 

positive predictions that truly belong to the positive class. Recall measures how well the 512 

predictions cover the entire positive class. A low precision implies a high rate of false 513 

positives, whereas a low recall indicates many false negatives within the predictions. To 514 

summarize these two criteria, we used the F1 score, defined as the harmonic mean of the 515 

two. This score is also originally proposed for binary classification problems and is defined 516 

as 𝐹𝐹1 = 2 𝑃𝑃𝑃𝑃.𝑅𝑅𝑅𝑅
(𝑃𝑃𝑃𝑃+𝑅𝑅𝑅𝑅)

 , where 𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

  and 𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑃𝑃+𝐹𝐹𝐹𝐹

 are precision and recall, respectively, 517 

and TP, FP, and FN denote the number of true positives (test samples with positive class 518 

in reality and in prediction), false positives (test samples with negative class in reality but 519 

positive in prediction), and false negatives (test samples with positive class in reality but 520 

negative in prediction), respectively. For multiclass problems like ours, F1 is reported as 521 

the (weighted) average of F1 scores individually evaluated for one-versus-rest of each class. 522 

In the case of weighted averaging, the score of each class is weighted according to its 523 

sample size, hence taking into account the existing class imbalance. 524 

Table 2 summarizes the evaluation results of each classifier involved in our experiments. 525 

As is shown by our results, all the machine learning models were capable of predicting 526 

class labels though with different levels of accuracy; however, these results confirm the 527 

inferior classification ability of the linear LR model, showing that this model could not 528 

separate the training samples accurately and demonstrates the nonlinearity of the decision 529 

boundaries between the classes in our data sets. The model yielding the highest test 530 

accuracy had the highest complexity (non-linearity), which was expected as classifying 531 
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real-world data usually demands highly non-linear models. Now as the complexity of 532 

learning models grows, interpretability of their outcomes become more challenging. More 533 

specifically, if one needs to translate the resulting prediction into a handful of simple 534 

algebraic rules, one would have to apply simpler (or even linear) techniques. Such 535 

interpretability power comes with a cost, i.e., a more modest generalization accuracy. Some 536 

relatively shallow DT (e.g., dmax = 7) are competitive against the deeper unconstrained DT 537 

(dmax = NA) or RF models in classifying the unseen test samples; however, they severely 538 

underperform when explaining the training data set. This observation indicates that the 539 

generalizability of classification models does not always linearly increase with their 540 

complexity.  541 

Table 2 F1 scores of the trained classifiers. Note that for the training data set, the weighted 542 
and unweighted average F1 are the same because the class labels have been balanced 543 
through oversampling. Decision-tree (DT) models are trained using different dmax values 544 
and without any depth-dependent conditions (dmax = NA) 545 

Metric (%) DT (evaluated for various dmax) RF LR 
4 5 6 7 8 9 10 NA 

Training 
F1 (av.) 79.3 82.89 88.44 91.3 93.73 95.38 97.0 100 100 77.3 

Test 
F1 (av.) 63.15 63.41 67.91 74.18 71.08 69.66 71.88 73.54 75.19 60.21 
F1 (weighted av.) 74.6 72.99 80.99 86.05 85.47 85.3 86.11 87.44 89.04 77 

In calculating the F1 score, the predictions are obtained by selecting the class having the 546 

highest probabilities computed through the predictive model. For instance, computing F1 547 

in a binary classification is associated with placing a threshold for the positive class 548 

probabilities at 0.5. To obtain a more detailed portrait of the performance of a binary 549 

predictive model, we can change this threshold from 0 to 1 to obtain a range of F1 scores 550 

or precision-recall pairs. Plotting the resulting precision versus the recalls yields what is 551 

usually called the precision-recall curve. An ideal classifier results in a recall and precision 552 
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unit that is independent of the applied threshold; hence, the area under its precision-recall 553 

curve is 1. Fig. 10 presents the precision-recall curves of the LR and RF classifiers 554 

operating in a one-versus-rest mode for each class. DT is not considered here because trees 555 

that are not too shallow (e.g., dmax = NA) typically assign degenerative class probabilities 556 

to samples (therefore, zero uncertainty); there are thus very few operating points on the 557 

precision-recall curve. We then compared our classifiers with random baselines, for which 558 

the precision remains constant and equal to the size ratio of the corresponding class 559 

(equivalent to the positive-to-negative class ratio of the corresponding one-versus-rest 560 

binary classification). 561 

Fig. 10 Precision-recall curves of the logistic-regression (LR) and random-forest (RF) 562 
classifiers. Each graph indicates the curves for binary classification of an individual class 563 
versus the rest (one-versus-rest). The dashed lines represent random classifiers that have 564 
constant precision-recall curves for any classification problem 565 
 566 
Fig.11 shows confusion matrices for the trained classifiers to better illustrate a binary 567 

comparison between the classes in the results. The (i,j)-th element of a confusion matrix 568 

shows the (normalized) count of samples that actually belong to class i but have been 569 

classified as class j. As can be observed in this figure, a common mistake among all the 570 

models is misclassifying samples of class BS as class S. In addition, a mistake that both 571 



34 
 

our non-linear models (DT and RF) have committed is mistaking FB samples for class PB, 572 

whereas the linear model (LR) incorrectly labeled a significant number of PS samples as 573 

PB. 574 

 575 
Fig. 11 Confusion matrix for the trained classifiers. The elements are normalized over the rows to 576 

compensate for the imbalancedness of the test data set. 577 

A completely different working condition of these three algorithms would lead to different 578 

results and prediction accuracy. For example, a particular formula for classifying and 579 

predicting is used for LR, whereas RF works by constructing nodes and trees. The 580 

classification model of impact droplets on hydrophobic and superhydrophobic silicone 581 

rubber surfaces obtains satisfying results on the basis of the algorithms tested on the 582 

experimental data. Linear-based algorithms (LR) are not as accurate as the more 583 

sophisticated and nonlinear algorithms (DT and RF) for classifying impact droplets in 584 

scenarios of more complex experimental conditions. This leads to inaccuracies; however, 585 

LR is slightly more effective than DT and RF at producing understandable and interpretable 586 

equations. Consequently, the strong performance of our models indicates their ability to 587 

determine the complex relationship between the various parameters affecting impact 588 

droplets. 589 

3.2.1. Analyzing the Importance of Features 590 
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The main objectives of the classification techniques are (1) predicting the output for new 591 

input features as accurately as possible and (2) providing information about the relationship 592 

between the input variables and output. Some of these models are linear classification 593 

models (e.g., LR) that are understandable and interpretable; however, these models may 594 

not perform better than nonlinear models. 595 

One of the critical inputs to these machine-learning algorithms is the feature importance 596 

measurement, which can have various applications, such as reducing the number of 597 

dimensions and selecting the most contributing factors in a given data set [57,58]. 598 

Depicting a one-to-one relationship between impact behavior and the experimental 599 

parameters (including Re, We, CA, CAH, Sq, and T) is possible; however, in this 600 

conventional approach, quantifying variable importance is particularly challenging in the 601 

case of nonlinear relationships between parameters. Moreover, evaluating the simultaneous 602 

effect of each conditioning factor on impact behavior appears impossible through 603 

conventional methods. 604 

We used multiclass supervised learning with a multitude of features to solve our 605 

classification task. We evaluate the performance of our models when all features are 606 

considered simultaneously. However, we can also isolate individual features and assess 607 

their respective importance in the classification. To perform the latter, we must apply 608 

distinct strategies for tree-based models (DT and RF) and logistic regression. 609 

As explained above, decision trees comprise several nodes, each of which includes a 610 

decision rule as a function of a single feature. Here, we define the importance of each 611 

feature as the average reduction of the impurity criterion caused by that feature. Because 612 
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we use the Ginni index to measure the impurity, the resulting score is also called the Ginni 613 

importance. 614 

In the LR approach, we utilize the amount of change in the log-likelihood objective 615 

function of the LR model that is caused by a particular feature to measure its importance. 616 

More specifically, we repeat the training after removing a feature from the training data set 617 

and compute the log-likelihood objective function of the resulting model (excluding the 618 

regularization penalty term). The magnitude of the difference between the log-likelihood 619 

of the modified and original training models is the importance score of the considered 620 

feature. 621 

In predicting the impact droplet process, the contribution of the different affecting 622 

parameters, their effectiveness, and their influence on the accuracy of the predictive models 623 

is critical. To demonstrate this, we present the relative importance of features (Re, We, CA, 624 

CAH, Sq, and T) for the three models (Fig. 12). Here, we consider the DT model without 625 

any depth-dependent conditions. We observe that all the models agree that T and Re are 626 

essential features to be retained. RF also assigns high importance to We number. 627 

Interestingly, RF estimated that the We and Re numbers are the most important variables. 628 

T is the most important feature for surface properties, followed by CA, CAH, and Sq. Our 629 

experimental results (Figs. 7, 8) show that the Re and We numbers are the key factors 630 

affecting droplet behavior. For example, we observed a similar pattern for all water-631 

repellent superhydrophobic silicone surfaces; however, depending on the selected Re and 632 

We numbers, it provoked either full bouncing, partial bouncing, deposition, splashing, 633 

prompt splashing, or bouncing-splashing. In this study, RF models perform better in 634 
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analyzing feature importance given their agreement with the experimental results. 635 

Moreover, looking specifically at the dynamics of impacting droplets under icing 636 

conditions, as water droplet properties and wetting properties depend on temperature, it 637 

seems difficult to say that there is a linear relationship between these factors. This issue 638 

also highlights that using nonlinear algorithms such as RF to classify droplet behaviors 639 

under more complex experimental conditions is a valid and accurate approach for 640 

predicting droplet impact dynamics. 641 

 642 

Fig. 12 Importance analysis of the features; temperature (T), Reynolds number (Re), Weber number 643 
(We), contact angle (CA), contact angle hysteresis (CAH) and surface roughness (Sq)) for the three 644 
trained models of logistic regression (LR), decision tree (DT), and random forest (RF) 645 

4. Conclusion 646 

Here we studied droplet impacts on hydrophobic and superhydrophobic surfaces at 647 

different temperatures and proposed design guidelines for nonwetting surfaces under 648 

droplet impingement. We applied experimental and statistical approaches to analyze the 649 

impact dynamics of water droplets at −20, −10, and 25 °C and discussed the influence of 650 

the substrate roughness, temperature, and wetting properties. The experiments showed that 651 
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full bouncing observed only on superhydrophobic having a CA>160° and a CAH < 2°; and 652 

temperature has a minor effect on droplet dynamics on cold hydrophobic and 653 

superhydrophobic silicone rubber surfaces for a wide range of We numbers and different 654 

substrate temperatures. Multiple machine-learning methods were used to predict the 655 

temperature-dependent droplet behavior on hydrophobic and superhydrophobic silicone 656 

rubber surfaces, taking into consideration the impact velocity, droplet diameter, and surface 657 

features (CA, CAH, Sq, and T). Our logistic regression–based models produced equations 658 

for probability, and we combined experimental findings to model multilabel outcomes of 659 

different phenomena arising during droplet impact on a solid surface. We also used both 660 

linear (LR) and nonlinear (DT and RF) methods to assess the importance of surface 661 

characteristics and found that We and Re numbers were the most important factors followed 662 

by factors related to surface T, then CA, CAH, and Sq. 663 

To the best of our knowledge, this work presents the first application of machine learning 664 

to experimental results obtained for the detailed dynamic motions of a water droplet 665 

impacting hydrophobic and superhydrophobic surfaces at different temperatures. Our 666 

results provide a means of predicting droplet impact behavior through the application of 667 

statistical LR modeling and the data-mining DT and RF modeling. All three machine-668 

learning approaches agreed well with the experimental results for classifying droplet 669 

behaviors. Although all models exhibited a reasonable performance, the lower accuracy of 670 

the LR model indicated that the correlation was nonlinear. The dependency of water droplet 671 

properties and wetting properties on temperature makes finding a linear relationship 672 

between these parameters difficult. Thus, modeling water droplet behavior on the basis of 673 
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these factors is not straightforward using conventional methods, illustrating the utility of 674 

the machine-learning approach. 675 
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